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Introduction and outline

Some physical systems display a zero-temperature quantum phase transition when an
external parameter is tuned
- interesting playground for condensed matter theory: exotic scaling laws, models

without quasiparticles...

Our goal: study the universal properties of the quantum O(N) model in the vicinity of its
quantum critical point.
Outline:

@ Introduction: QPTs and the quantum O(N) model.

@ Motivation for a (nonperturbative) functional renormalization group approach.

Thermodynamics of the model.

The “Higgs” amplitude mode.

@ Universal scaling function of the conductivity.
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Quantum phase transitions — examples

Transverse field Ising model: H = —J, ZW) §f§f~ -hy.s
(Jz/h)e Jf/h
Single paramagnetic GS: T Degenerate ferromagnetic GSs:
All spins aligned with h field ! All spins parralel to z axis
Interacting lattice bosons (integer filling):
t t
h /_\
t: hopping o0
U: on-site interaction energy \/ e \/
\ un;(a; —=1)/2
(t/U)e t/U
v Superfluid phase

Insulating phase
(localized bosons)
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Describing QPTs

We restrict ourselves to second order QPTs for which at the transition:
o the gap A closes;
@ the correlation length & diverges.

We are interested in the low-energy, long distance physics — (effective) field theories.

The path integral formalism allows to rewrite the partition function.

Second quantization Path integral formulation

A, (r)", §(r) operators (r, 7) complex fields
z=Tre*" Z= /D(/J gle
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Statistical field theory and QPT

A A n * B * d *
L9 ST 0 = [ ar{ vy o+ [a’ryo).
Periodic BCs: y(r, T + B) = ¢(r, 7).
@ Transforms the d-dimensional quantum problem into a d + 1 classical field theory...

@ ... at the cost of a new imaginary time dimension 7 € [0, ].

@ A QPT manifests as a phase transition in the classical field theory.

— QPTs show all features of classical critical phenomenons: universality classes, scaling,...
E.g. for a 2d theory pressure and conductivity scale like

P(T) = P(T = 0) + T2+ZF(£), o(w) = %2 (% I)

with F(x), Z(x, y) universal scaling functions.
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Quantum O(N) model

. . . . 4
Lorentz-invariant action, where @ is a real N-component field (~ ¢~ model)

S[e] / dT/d r{ (Vo) +21?(3r¢)2+f0¢2+uo(‘l’2)2}

@ The couplings are temperature-independent
o Effective action that describes several condensed matter phase transitions:
Bose—Hubbard model (N = 2), Quantum antiferromagnets (N = 3).

At zero T the model is strictly equivalent to the d + 1 classical O(N) model.
Below a critical value of rg, (@) # 0

— the O(N) symmetry is spontaneously broken.

T = 0 phase diagram:

> r
Ordered phase, (@) # 0 T'o. Disordered phase, () = 0
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Qualitative T > 0 phase diagram

At finite T the QPT is destroyed (critical energy scales << T).

However there are crossovers between different regimes:

Classical
-——— === - - Typical (N = 3) 2d phase diagram.
' Qc ' @ Energy scales: T and zero-T gap A.
o N @ Crossover lines T ~ A ~ |8rg]".
§=e &(T) = ¢(0)
@ For N =1or 2 existenceofa T >0
“ordered” phase.
LRO o C

In the quantum critical fan, physical quantities are described by “exotic” scaling laws. E.g.,
in 2d

2
P(T) = P(0) + T2**F,, o(w) = %z(g—“;)
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Why do we need to go beyond mean-field?

Like for classical phase transitions, the dimension plays an important role.

@ For d +1 2= 4, the theory is controlled by a Gaussian fixed point and the MF is
qualitatively correct.

@ For d =2 it is harder to answer. Strongly interacting Wilson—Fischer fixed point: MF

is wrong.

Perturbation theories (weak/strong coupling, large-N) ill-suited to study the critical
regime.

— need for a nonperturbative framework: FRG
Complementary existing approaches:

@ Analytical: holographic models, conformal field theories.

@ Numerical: Monte Carlo, exact diagonalization.
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The functional renormalization group: philosophy

FRG: implemented on effective action (Gibbs free energy) I ¢]. (= T[{@)D.

I': Legendre transform of free energy In Z.
2]~ [ollew(-stol+ [ 1-0),  rol=-mz+ [ 1-6.
X X

Vertices [ = 6"T/8¢" contain the physical information:
@ [(x)=const. = U: potential > thermodynamics (physical ¢ extremizes I').
o 1= [G]": inverse propagator.

Similar in concept to Wilsonian RG: degrees of 0 k A

W—J' —_
Setr L@ {gik}]  Tile]

freedom are progressively integrated out.
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The functional renormalization group: in practice

This is implemented by adding to the action a “mass-like” term:

S S, =S+ASy,

15.00] = ; [ ola)- Rilaola).

Ry gives a very large mass to modes at momenta < k.

New k-dependent effective action I — T.
@ k = A: all fluctuations are frozen and MF is exact, [y = S.

@ k = 0: all fluctuations are taken into account, [,_g =T.

Exact flow equation

1 -1
koklle] =5 Tr {akRk (r,(f)[fp] + Rk) }
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Functional renormalization group: approximation procedures

Simplest idea: the derivative expansion (DE).

Yi(9?)

2
249) 3,0 + unle?) + 1P (g 5,01

Ansatz: Ty[@] =/ 5
X

@ Nonperturbative (no small parameter) and 1-loop exact.
o Coupled PDEs for Uy, Zk and Yj: numerically solvable.
@ Valid in principle at small momenta only.

Other example: the Blaizot—-Mendéz-Galain—VWschebor procedure (BMW) where

high-order vertices re r@ . are approximated — closed equation for F(z)(p).

Yields good results at finite momenta! [Blaizot et al., PRE ’06] [Benitez et al., PRE *09]

FRG DE FRG BMW  Bootstrap
.0443 .039 .036298(2)
.6307 .632 .629971(4)

Critical exponents for the (2 + 1)d
Ising model:
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Thermodynamics

Application of the DE: we compute the universal scaling functions of the pressure and
internal energy density.

o (ke T)’ o (keT)®
P(T)=P(T =0)+ (he)? F(A/(kgT), €(T)=¢(T=0)- (he)? O(A/kgT).

Left to right: 6(x) for Ising, XY, Heisenberg [x = (A/kBT)VV].
T 0 T T T T T O— T T T T

0.1 1
03 1
— NPRG
04 o MC
7 20 2 4 6 4 2 0 2 4 64 2 0 2 4 &

[Rancon, F.R. et al., PRB ’16].
Full lines: FRG; dots: Monte-Carlo simulations for 3D classical spin systems with PBC.

Full potential 0(82) DE, improvement over previous work by Rangon et al.
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Classical — quantum mapping

A classical theory confined along a L direction and a quantum T > O theory are

D-1 Ly
Hg. =/d X|| / dx, H, H,,
0

(‘\ PBC (a)

- P | —
LJ_ critical fluctuations 5

e

The scaling function 8 describes the scaling of the critical Casimir force of a 3D classical

equivalent!

model near criticality with periodic boundary conditions.
Casimir force f(L,, §) ~ LlDG(LJ_/E).

(Critical Casimir forces: [Fisher and de Gennes, C.R.Acad. Sci. '78]) &: correlation length.
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Dynamics: mean-field excitations

U(@) = ro@” + uo(9?)

Mean-field zero T phase diagram:

- >
(p)#0 ro (@) =0

N — 1 Goldstone modes

N gapped modes (gap A).

+ amplitude mode (gap wy).

Energy

Mean-field:

A=A |r0 - I’Oc
1/2

Wy = A\/§|r0 - I'Ocl

1/2

Goldstone

-
y

roc ro
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Beyond the Gaussian approximation

Question: what happens to the “Higgs” amplitude mode beyond MF?
@ Is it a well defined mode? What is the quasiexcitation lifetime?

@ What happens near the critical point?

“In general, this Higgs particle can decay into multiple lower-energy spin waves. It has
been argued that such decay processes dominate for d < 3, and the Higgs particle is
therefore not a stable excitation.”

[Sachdev, Quantum Phase Transitions, 2nd. ed]
Emission of Goldstone bosons — IR divergence of the longitudinal susceptibility.
[Patasinskij et al., JETP’ 73], [Zwerger, PRL ’04], [Dupuis, PRE’1 1], ...
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Scalar response function

Answer: consider a different response function. [Podolsky, Auerbach and Arovas, PRB ’1 1]

Right probe: the scalar susceptibility.

susceptibility

x5(r.7) = (@”(r, 1)9%(0,0)),
Xs(w) = Im[xs(a = 0,iw, = w +1i0")].

w
To compute the 4-point correlation function: introduce an additional source,

S S[J,h]=5 +/dd”x1 " +/d"’+‘x he?.

Effective action ¢, h]: Legendre transform wrt J but not h. Then

6(n+m)r

-1 2
xslw) = =) + () (), 8 psimp’

Approximation method: BMW to obtain full frequency dependence.
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Results and comparison

FPRG BMW [Rose and Dupuis, PRB ’15]:
T T T

N=2 e N=4 P
5107--- N=3  sansus N=100 1
o
:><v’ .......
=5 N\ f
T = T T LR Ll Lol
I<1 ""c;f-'?‘ ----------
0 o | | | N
w/A

MC [Gazit, Podolski,Auerbach PRL

’13]:
3 -
. K v
= a0
ﬁ?< 2 N=2 5y
4
&
<1
0
3
o 2
!
B
<1
0

Experimental observation: [Endres et al., Nature *12].

Higgs mass my /A N=3 N=2 N=3 N=2
MF V2 V2 FRG BMW 27 22
QMC (Chen et al.) 3.3(8) | Lattice QMC (Lohofer etal.) 2.6(4)
QMC (Gazit et al.) 22(3)  21(3) Exact diag. (Nishiyama) 27 2.1(2)
€ expansion (Katan et al.) 1.64 1.67
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Conductivity of the O(N) model

O(N) symmetry — conservation of angular momentum L, current 9;L + V - J = 0.

We make the O(N) symmetry local by adding a gauge field, 0, = D, = 9, — A,,.
Ay = ALT? € so(N) T N(N - 1)/2 generators, 7',7 = —Tﬂ

6S

SAY,

N =2 (bosons): j ~ i(Y*Vy — pVyY*), ¢ = @ +i,.

Current densities Jz =- = jz - AZ(p T, jz =@- Taap(p

Linear response theory

§?1nz
Ko (x - x') = (j2x)j5(x)) = 8, 6(x - x) (T?p - TP ) = ———=
a6 =) = (i) = 0= x) (T°0 - T70) A% (x)8A(x')
Oﬂf(iw,,) = —w—KZS(pX = 0@, = W = o) conductivity tensor
n
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Conductivity: generalities

. b
The conductivity tensor oﬂv:

. b
o is diagonal, o5, = 8,,6450"%

oalw) ifT%@ %0,
@ has two independent components, 6°°(w) = a

og(w) fT @=0;
@ in the disordered phase and at the QCP 04 = 05 = 0.

For N = 2, there is only one so(/N) generator and the conductivity in the ordered phase
reduces to Oy.
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Universal properties

Long-term objective: determine the conductivity in the QC regime.

Low frequency behavior:

AT . e

+. OlwT)=1m -
*Moc I'o

oa(w) = i/L(w+i0") o(w)=0" o(w) = -iCw
0g(w) = ? (not much investigated as only exists for N > 3)

2 ) 2
0" /oq, C/Log are universal!  (0gq = q°/h) [Fischer et al., PRL ’89]
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Goals

Objective: determine the universal scaling form of the conductivity.
. . . . .a b
Technically: compute 4 point correlation functions (jzjv).

Approaches:
@ QMC (Sgrensen, Chen, Prokof’ev, Pollet, Gazit, Podolsky, Auerbach);
@ Holography (Myers, Sachdev, Witzack-Krempa);
@ CFT (Poland, Sachdev, Simmons-Duffin, Witzack-Krempa);
o FRG (us!).
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Effective action formalism

Idea: use the same trick than for the Higgs.

The partition function depends on two sources, the gauge field and J that couples linearly

to @:
203,A1= [ Dlglexp(-S[o. A1+ [ 1-@).

The effective action is the Legendre transform of In Z wrt J but not A:

Mo, Al =—InZ[J,A]+/J-<p.

(2) -1
Kb _ 6“Inz =) B () (r(z,o)) Q)

uv S5A9 6Ab au,bv i,au ij j.bv
uCv
with
r(n,m) ) 6(n+m)r
 5ingpsima’
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ERG formulation

Problem of the FRG: the regulator (~ mass) breaks down gauge invariance:
1 2
ASy =5 | (a)-Re(a’)e(-q).
q

How to recover gauge invariance?
Answer: make the regulator gauge dependent!
[Morris, N. Phys. B ’00] [Codello, Percacci et al., EPJC ’16] [Bartosh, PRB ’13]

85¢ = 5 [ 0+ R(-3})00) > 85([A] = 5 [ @(x)- R~} Jolx)

Modified flow equations due to the presence of A.
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RG approximation scheme

Which approximation procedure do we use!
First idea: BMWV to obtain full momentum dependence (as done for the study of the Higgs

mode).

Problem: it fails!
@ Impossible to close the flow equations rigorously.

@ Setting momenta to zero in flow equations breaks down gauge invariance.
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Derivative expansion scheme

We try a derivative expansion scheme and project the flow equation onto a
gauge-invariant Ansatz. F,, = 9,A, — 0,A, — [Ay, A, ] allows us to build two O(Ai)
gauge-invariant terms:

(il0. A= [ 524()(0u@) + 7¥4(p)@up) + Urlp) (sancard O} DF)

1 1
+ 2%uP) THER) + 2 X k(R)Fuve)’.

p= (p2/2, 00,k: minimum of the potential.

Expression of the conductivity within the DE

0a(w) = 2p0Z(po)/(w +i0™) + w[Xi(po) + 200X:(P0)],
og(w) = wXi(po).
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Results

This simple DE scheme allows us to recover the low momenta physics! We retrieve the

universal ratio C/L. Exact value for N = 00, good agreement with MC (~ 5%) for N = 2.

N 2 3 4 1000 | oo (exact)
C/NLo; (0,=gq’/h) | 0105 0.0742 0.0598 0.0416 | 0.04167

The picture is more complicated in the critical regime.
@ DE can sometimes be extrapolated to finite w but not always.

o r(0,2)(&)) ~ 1/w: divergence in the flow:

o(w) ~ )?fcrit% with Xi e = Il(in?) kXi(po k) (fixed point value).

o Setting w ~ k yields an estimate of the conductivity, 0 ~ X{tcm.
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Op

Similarly, in the ordered phase, 0g(w) ~ X; oqw/k.

v* . . . .
Xi,ord 1s an universal number — verified for N = 00, conjecture for N < oo.

T T

046 ——N=3 — B
044 TN Ll |
Soa| = Full: QCP
> 040 | =

Dashed: ordered
0.38 - ‘ B
0 20

0
In(A/K)

.. vk .
More surprising: X; .4 numerically does not depend on N!

m
og(w) = 804 for all N: “superuniversality”!

[Rose and Dupuis, PRB ’17]
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Beyond DE...?

Next project: use a momentum-dependent scheme to compute 0(w) at finite w.

From this: deduce op, o*, ..

Idea: DE-like Ansatz with momentum dependence.

Preliminary results:

o 0" = 0.340,, bootstrap result: 0" = 0.3554(6)0, [Kos et al., JHEP ’15], QMC
predicts value from 0.355 to 0.361.

m
@ The conjecture that og(w — 0) = 3% for all N holds.
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Review and conclusion

@ Although harder than thermodynamics FRG can be successfully used to describe
dynamics in the vicinity of QPTs and compare well with complementary approaches
(holography, CFTs, numerics).

@ Study of the excitation spectrum of the O(N) model: Higgs [Rose et. al, PRB ’15] (and
bound states [Rose et. al, PRB ’16]).

@ Transport: a simple derivative expansion allows to obtain results that compare well
with MC. Results allow to make a conjecture on the universal behavior of 0g [Rose
and Dupuis, PRB ’17].

@ This will soon be confirmed with a momentum-dependent scheme we are
developing!

@ Hardest part (and long term goal): T > 0, a little because of computational time and
a lot because of analytic continuation! Proposals to overcome this difficulty
(Strodthoff, Pawlowski).
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