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Outline of the talk

Several systems undergo a zero-temperature quantum phase transition
when an external parameter is tuned.
Our goal: study universal transport properties of those transitions.

Here, we’ll talk about the conductivity of the quantum O(N)model in 2 + 1
dimensions.

Outline:

we’ll present the model, definitions and some general results;

devise an ERG (or fRG, or NPRG...) scheme to compute conductivity;

...and show some results.
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Introduction: the O(N)model

The action is

S[φ] = ∫ β

0
dτ ∫ ddr

1
2
(∂µφ)2 + r0φ2

+ u0(φ2)2 .
φ: N-component scalar field, β: inverse temperature, d = 2

T

r0r0,c

CR

Classical

QC

QD

LRO

Quantum phase transition
controlled by the 3DWilson-Fisher
fixed point.

Describes SF-insulator transition for lattice bosons (N = 2), AF ordering for
spins systems (N = 3).
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Definition of the conductivity

Make the O(N) symmetry local by adding a gauge field, ∂µ → Dµ = ∂µ − Aµ .

Aµ = A
a
µT

a ∈ so(N) T a : N(N − 1)/2 generators, T ai j = −T aji

Current densities Jaµ = −
δS
δAaµ

= jaµ − A
a
µφ ⋅ T aφ, jaµ = φ ⋅ T a∂µφ

N = 2 (bosons): j ∼ i(ψ∗∇ψ − ψ∇ψ∗), ψ = φ1 + iφ2.

Linear response theory

Kabµν (x − x′) = ⟨ jaµ(x) jbν (x′)⟩ − δµνδ(x − x′) ⟨T aφ ⋅ Tbφ⟩ = δ(2) ln Z
δAaµ(x)δAbν(x′)

σabµν (iωn) = −
1
ωn

Kabµν (px = 0, py = 0, pz = iωn) conductivity tensor
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Conductivity: generalities

The conductivity tensor σabµν :

is diagonal, σabµν = δµνδabσ
aa ;

has two independent components, σaa(ω) = {σA(ω) if T aφ ≠ 0,

σB(ω) if T aφ = 0;
in the disordered phase and at the QCP σA = σB = σ.

For N = 2, there is only one so(N) generator and the conductivity in the
ordered phase reduces to σA.
Low frequency behavior: [Gazit, Podolsky, Auerbach, PRB 13]

(T = 0) r0,c r0

σA(ω) ∼ i/Lω
σB(ω) = ? (not much investigated as only exists for N ≥ 3)

σ(ω) = σ∗ σ(ω) ∼ −iCω

σ∗/σq, C/Lσ2q are universal! (σq = q2/h) [Fischer et al., PRL 89]
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Goals

Objective: determine the universal scaling form of the conductivity.
Technically: compute 4 point correlation functions ⟨ jaµ jbν ⟩.
Approaches:

QMC (Sørensen, Chen, Prokof’ev, Pollet, Gazit, Podolsky, Auerbach);

AdS/CFT (Myers, Sachdev, Witzack-Krempa);

ERG (us!).
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Effective action formalism

The partition function depends on two sources, the gauge field and J that
couples linearly to φ:

Z[J,A] = ∫ D[φ] exp(−S[φ,A] + ∫
x
J ⋅ φ).

The effective action is the Legendre transform of ln Zwrt J but notA:

Γ[φ,A] = − ln Z[J,A] + ∫
x
J ⋅ φ.

Kabµν = δ(2) ln Z
δAaµδA

b
ν

= −Γ(0,2)aµ,bν + Γ(1,1)i ,aµ (Γ(2,0))−1i j Γ(1,1)j,bν

with

Γ(n,m) = δ(n+m)Γ
δ(n)φδ(m)A .
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ERG formulation

ERG scheme: add a k-dependent infrared regulator to construct a family of
theories that interpolate between MF (k = Λ) and exact solution (k = 0).

S → Sk = S + ∆Sk , Γ → Γk , ∆Sk =
1
2
∫
q
φ(q) ⋅ Rk(q2)φ(−q),

k∂kΓk =
1
2
Tr[k∂kRk ⋅ (Γ(2,0)k + Rk)−1]

Problem: how to preserve gauge invariance?
Make the regulator gauge dependent!
[Morris, N. Phys. B 00] [Codello, Percacci et al., EPJC 16] [Bartosh, PRB 13]

∆Sk =
1
2
∫
x
φ(x) ⋅ Rk(−∂2µ)φ(x) → ∆Sk[A] = 1

2
∫
x
φ(x) ⋅ Rk(−D2

µ)φ(x)
Modified flow equations due to the presence of A.
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RG approximation scheme

The flow for Γ(n,m) involves Γ(n+1,m) and Γ(n+2,m)
⇒ how do we close the flow equations?

First idea: BMW to obtain full momentum dependence (as done for the study
of the Higgs mode, [FR, Léonard, Dupuis, PRB 15]).

Problem: it fails!

Impossible to close the flow equations rigorously.

Setting momenta to zero in flow equations breaks down gauge
invariance.
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Derivative expansion scheme

We rather try a derivative expansion scheme and project the flow equation
onto a gauge-invariant Ansatz. Fµν = ∂µAν − ∂νAµ − [Aµ , Aν] allows us to
build two O(A2µ) gauge invariant terms:

Γk[φ,A] = ∫
x

1
2
Zk(ρ)(Dµφ)2 + 1

4
Yk(ρ)(∂µρ)2 + Uk(ρ) (standard O(∂2µ) DE)

+
1
4
X1,k(ρ) Tr(F2µν) + 1

4
X2,k(ρ)(Fµνφ)2 .

ρ = φ2/2, ρ0,k : minimum of the potential.

Expression of the conductivity within the DE

σA(ω) = 2ρ0Z(ρ0)/ω + ω[X1(ρ0) + 2ρ0X2(ρ0)],
σB(ω) = ωX1(ρ0).
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Results

This simple DE scheme allows us to recover the lowmomenta physics! We
retrieve the universal ratio C/L. Exact value for N = ∞, good agreement with
MC (∼ 5%) for N = 2.

N 2 3 4 1000 ∞ (exact)
C/NLσ2

q (σq = q2/h) 0.105 0.0742 0.0598 0.0416 0.04167

The picture is more complicated in the critical regime.

DE is only valid at ω ≪ k.

Γ(0,2)(p) ∼ 1/p: divergence in the flow:

σ(ω) ∼ X̃∗1,critωk with X̃∗1,crit = lim
k→0

kX1(ρ0,k) (fixed point value).

Setting ω ∼ k yields an estimate of the conductivity, σ∗ ∼ X̃∗1,crit.
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σB

Similarly, in the ordered phase, σB(ω) ∼ X̃∗1,ordω/k.
X̃∗1,ord is an universal number— verified for N = ∞, conjecture for N < ∞.

0 10 20

0.38

0.40

0.42

0.44

0.46

ln(Λ/k)

X̃ 1
,k
(ρ 0,k

) N = 3
N = 10

Full: QCP

Dashed: ordered

More surprising: X̃∗1,ord numerically does not depend on N!

σB(ω) = π
8
σq for all N: “superuniversality”!
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Review and conclusion

It is possible to devise a “gauge-invariant” ERG scheme to compute the
conductivity.

A simple derivative expansion allows to obtain results that compare
well with MC.

Results allow to make a conjecture on the universal behavior of σB...

...that needs to be confirmed with a momentum-dependent scheme we
are currently developing.

Long-term goal: T > 0!

A preprint will soon be available on the arXiv!

F. Rose (LPTMC, UPMC) Conductivity in the vicinity of a QCP ERG2016, 19 September 2016 13 / 13


